Attribution of Deep Western Boundary Current variability at 26.51N

نویسندگان

  • Christopher S. Meinen
  • Silvia L. Garzoli
چکیده

Observed variations in the Deep Western Boundary Current (DWBC) at 26.51N, which carries the deep limb of the Atlantic Meridional Overturning Circulation (MOC), have been shown to greatly exceed in magnitude the variations of the overall basin-wide MOC, with strong variability at a range of time scales from weeks to multiple-months. Attribution of these strong DWBC variations will be crucial for understanding variations in the MOC itself. Nevertheless, despite many years of moored observations of the DWBC at 26.51N, understanding of these variations has been elusive. Two years of observations from a high horizontal resolution array of pressure-equipped inverted echo sounders are used together with output from a modern high-resolution numerical model to investigate the mechanisms behind these 720 10 m s 1 volume transport variations. The model and observational results together suggest that the strongest variations cannot be explained solely via either of the two most commonly proposed mechanisms – meandering or pulsation of the DWBC. The dominant mechanism appears to be propagation of Rossby Wave-like structures into the region from the east, and it is the impact of these features in the region that yield the largest transport anomalies. These waves have been observed and discussed in the past – however their key role as the dominant source of DWBC variability has not previously been recognized. The implications of these results are also discussed in the context of future observing systems for the DWBC. Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability in Deep Western Boundary Current transports: Preliminary results from 26.5 N in the Atlantic

[1] Transport fluctuations of the deep limb of the Meridional Overturning Circulation (MOC) near the western boundary are presented from a line of inverted echo sounders, bottom pressure sensors, and a deep current meter east of Abaco Island, Bahamas, at 26.5 N from September 2004 through September 2005. The mean southward flow between 800 dbar and 4800 dbar was 39 10m s , with a northward reci...

متن کامل

The Interaction of a Deep Western Boundary Current and the Wind-Driven Gyres as a Cause for Low-Frequency Variability

Recent modeling and observational studies have indicated that the interaction of the Gulf Stream and the deep western boundary current (DWBC) in the North Atlantic may induce low-frequency (decadal timescale) variability. To understand the origin of this low-frequency variability, a line of studies is continued here addressing the stability and variability of the wind-driven circulation using t...

متن کامل

A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability

[1] The Indo-Pacific warm water pool in boreal winter shows a conspicuous gap over the South China Sea (SCS) where sea surface temperature (SST) is considerably lower than over the oceans both to the west and east. The formation mechanisms for the climatology and interannual variability of SCS SST in boreal winter are investigated using a suite of new satellite measurements. The winter SCS is d...

متن کامل

The Sensitivity of the Atlantic Meridional Overturning Circulation to Freshwater Forcing at Eddy-Permitting Resolutions

The effect of increasing horizontal resolution is examined to assess the response of the Atlantic meridional overturning circulation (AMOC) to freshwater perturbations. Versions of a global climate model with horizontal resolutions ranging from 1.8° (latitude) 3.6° (longitude) to 0.2° 0.4° are used to determine if the AMOC response to freshwater forcing is robust to increasing resolution. In th...

متن کامل

Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)

.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014